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Deep learning
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1402.4735 Baldi, Sadowski, Whiteson
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* Lookingfor heavy Higgs: H'=»WWbb vs
tt=>WWhbb

* Simplified LHC simulation (Delphes)
 Low-level variables

— 4-vectors
* High level variables

— Invariant masses
« =>DNN (Deep Neural Network) works better
« =>»DNN does not need high level
« =>=>»DNN learns the physics ???
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1410.3469 Baldi Sadowski Whiteson

Discovery significance (o)

Analysis H tautau : Htautau vs Z=tautau

— Low level

— High level (=human assisted)

L Shallow networks

Deep networks -

] DNN works better

J But now needs the high
level variables

) Things gets complicated...

1 Also need millions of
events (we typically have
few thousands)

) For now, no physics results
with DNN except... 5



Deep Learning success : NOVA
(neutrino)

3D schematic of
NOvA particle detector View from the top Particie 1
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arXiv 1604.01444 Aurisano et al

Softmax Output

NOVA (2)
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Convolutionnal Neural Network (CNN)

Linear Object
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Tracking challenge

https://sites.google.com/site/trackmliparticle/
https://www.kaggle.com/c/trackml-particle-identification

https://twitter.com/trackmlilhc




|ssue

High Luminosity LHCin 2025

Increase of number of proton collision per event

=>»pile-up of parasitic collision ~200 (compared to ~50 now)
=>very complex events

In particular for trajectography

Factor 10 speed-up to be found

11
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Connecting the dots but
- 3 dimensions
- 10’000 tracksx 10 points

S - "




Why is it difficult?

e 100’000 to group into 10°000 tracks of 10 points
— =»~10%°0000 combinations

— =brute force has (really) no chance

* Precision of the points : ~50um on a volume ~40 m3

— =3 10'* voxels!
— 2D projection =2 10° pixels |
— = image recognition algorithm have (really) no chance

* Not a classical problem



Tracking outside HEP
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Tracking Machine Learning challenge

https://twitter.com/trackmllhc

pitch : put the points (x,y,z) on the web
ask people to connect the dots
Objective : expose new algorithms

* Accuracy phase on Kaggle, only the accuracy:
May to August 2018

* Throughput phase on-going till 12th March
2019:accuracy and speed .



e Hit file

Dataset

(measured position mm)

hit_id X y z volume_id layer_id module_id

0 1 -64.409897 -7.163700 -1502.5 7 2 1

1 2 -55.336102 0.635342 -1502.5 7 2 1

2 3 -83.830498 -1.143010 -1502.5 7 2 1

3 4 -96.109100 -8.241030 -1502.5 7 2 1

4 5 -62.673599 -9.371200 -1502.5 7 2 1

DTrUth file (true position mm particle momentum GeV )

hit_id particle_id tx ty tz tpx tpy tpz weight
0o 1 0 -64.411598 -7.164120 -1502.5 250710.000000 -149908.000000 -956385.00000 0.000000
1 2 22525763437723648 -55.338501 0.630805 -1502.5 -0.570605 0.028390 -15.49220 0.000010
2 3 0 -83.828003 -1.145580 -1502.5 626295.000000 -169767.000000 -760877.00000 0.000000
3 4 297237712845406208 -96.122902 -8.230360 -1502.5 -0.225235 -0.050968 -3.70232 0.000008
4 5 418835796137607168 -62.659401 -9.375040 -1502.5 -0.281806 -0.023487 -6.57318 0.000009
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Visualisation sp off
tist t RI -Orsay with PhD

* Visit at CERN Tobias Isenberg visualisation scle

student Xiyao Wang
Will use TrackML dataset to experiment with visualisation/interaction

with Microsoft’ Hololens
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Leaderboard

Alw Team Name Kernel Team Members Score Entries
= Edwin Steiner “ﬁa 0.8161 2
a2 demelian D 0.8118 16
v1 outrunner a 0.8070 1
1 yuvalr 0.7726 19
— Mickey 5 0.7345 10
—  Zidmie P4 0.7220 11
a3 On est les champions !l & 0.7065 10
-1 icecuber 3@ 0.7054 3
1 Vicens Gaitan ‘ 0.7049 13
-1 Félicitations a la France ‘ ﬁ 0.6818 42
= Victor Nedel'ko “ﬁa 0.6653 4
— John Sweeney ! 0.6551 16
-3 trian2018 ¢ 0.6274 23
1 Seb B 5 0.6240 20
~1  Grzegorz Sionkowski e 0.6200 22
v 1 Andrea Lonza D 0.6043 7
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Why challenges work ?

MOTIVATION OF ORGANIZING CONTESTS:
EXTREME VALUE Courtesy : Lakhani 2014

Experts are highly skilled, trained - >
more focused, performed solution,
low variety

Probability Traditional
Experts
Nontraditional
Participants
Ol is suitable for a variety of Value of an Ildea High

nonconvential surprising ideas that
are « far» from traditional :
expertise - > high volatility Not just ML, but a general trend:

— Open Innovation



From domain to challenge and back
Challenge Challenge

Domain e.g. HEP organisation
Domain The
experts crowd
colve solves
the domain the
Sroblem challenge

problem
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Generative Adversarial Network



Generative Adversarial Network
Real / Fake
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Text to image

Condition GAN

this small bird has a pink this magnificent fellow is
breast and crown, and black almost all black with a red
primaries and secondaries. crest, and white cheek patch.

the flower has petals that this white and yellow flower
are bright pinkish purple have thin white petals and a
round yellow stamen

25



GAN for detector simulation

Real / Fake

GEANT

Gain en temps de calcul x1000
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Beware of surprises
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https://twitter.com/goodfellow ian/status/937406530743287808
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Scientific Method



Phys.Rev.Lett. 114 (2015)191803

A typical scientific publication

Combined Measurement of the Higgs Boson Mass in pp
Collisions at v/s = 7 and 8 TeV with the ATLAS and CMS
Experiments

(ATLAS Collaboration)’

(CMS Collaboration)*
(Received 25 March 2015; published 14 May 2015)

A measurement of the Higgs boson mass is presented based on the combined data samples of the ATLAS
and CMS experiments at the CERN LHC in the H — yy and H — ZZ — 4¢ decay channels. The results
are obtained from a simultaneous fit to the reconstructed invariant mass peaks in the two channels and
for the two experiments. The measured masses from the individual channels and the two experiments

are found to be consistent among themselves. The combined measured mass of the Higgs boson is
my = 125.09 £ 0.21 (stat) eV.

29






About 500 terms for the systematical uncertainty

FIG. 3 (color online).

ATLAS and CMS
LHC Run 1

ATLAS ECAL nonlinearity /
CMS photon nonlinearity

Material in front of ECAL
ECAL longitudinal response
ECAL lateral shower shape

Photon energy resolution

ATLAS H — yy vertex and conversion
reconstruction

Z — ee calibration

CMS electron energy scale and resolution

Muon momentum scale and resolution
ATLAS H — yy background modeling

Integrated luminosity

Additional experimental
systematic uncertainties

Theory uncertainties

Uncertainty in ATLAS
combined result

Uncertainty in CMS
combined result

Uncertainty in LHC
combined result
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The impacts dmy (see text) of the nuisance parameter groups in Table I on the ATLAS (left), CMS (center), and
combined (right) mass measurement uncertainty. The observed (expected) results are shown by the solid (empty) bars.
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>>>89-90: Where is this measurement documented in this note?
“*That has now been finished and published, and references will be updated in the notes
JHEP 09 (2014) 079 arXiv:1407.5532

>>>116: Doesn't "3 GeV" contradict your previous statement that we cover a pT range “from 1 GeV..”
“*No, those muons with pT~1 GeV and p~3 GeV are at high eta. But this is all irrelevant, as we only
use muons with pT>4 GeV.

>>>116: I'm not sure what you mean when you say that they “require” the combined reconstruction. |
would just say "Muons used in this analysis are reconstructed using a statistical combination of an MS
track and ID track”

**Only the muons that have a successful statistical combination of an MS track and ID track are used

in this analysis, the text is updated.

>>>128: what is fully efficient for signal candidates? It's not clear what the word "which" refers to.
“*This related to the vertex quality criteria applied to the fit.

>>>142: Please mention the total number of di-muon candidates here.
**This is added to the text, 7.8M for 2011,and ~65M for 2012.

>>>171: could you provide more information about how the psi is assigned to a primary vertex? I'm
surprised by your statement that “few" events contain multiple vertices; | thought pileup was a
significant issue at 7 TeV.

** Not really. The only relevance the primary vertex has is to measure Lxy, which is measured in the
transverse direction only,and hence is not changing much from one collision vertex to another.
However, the determination of the primary vertex position depends on whether the two muon tracks
were used in its fit or not, hence we need to know which vertex was it. But at 7 TeV there was not
much ambiguity, the vertex which jpsi came from was almost always the main primary one. Studies
from the 2011 Jpsi Phi analysis -- where vertex choice may have been an issued-- showed that there
was no impact in the few cases of an incorrect choice of vertex.

>>>Fig 1: Do you understand the eta dependence of this plot? What is the z-axis -- number of events
per bin? The bins are extremely small -- what size bins did you choose?

** Yes. This is the scatter plot of dimuon candidates. The x-axis is the absolute rapidity "y" of the
dimuon candidate, with the structure roughly reflecting the (smeared) geometry of the muon
chambers, with dips near/around the cracks and edges.

The z-axis is just the candidate yield, the bin-width in |y| is 5e-3 and in pT is 320 MeV

>>>228: The phi® definition is unclear to me, in particular what the ‘psi production”is. Do you mean
the psi momentum vector?
“*phi* is the angle between the psi production plane (defined by psi momentum and colliding proton

200 pages and weeks of discussion
In the collaboration
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Trust but verify, from theory to

experiment
| f#*,\u«mmuuﬁ'nw’

|4

Lisa Randall, Harvard [EE
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ML and systematical errors

e Paper conclusion end with:
— measurement = m + o(stat) £ o(syst)
— o(syst) systematical uncertainty
 We need to minimise the total error:
o(stat) zo(syst)
e Standard ML minimises o(stat)

J How to tell ML to minimise of(stat) + o(syst) ?



Systematical effect

Example of impact of the angle on handwrittendigits

11317(§




Simulation

Can we trust the simulation?
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Adversarial training

Inspired from 1505.07818 Ganinet al :

oL, Signal vs Background

06, A
( )

L, = cross,entropy(
Feature extractor targetsignal, predicted signal)

Dense Dense
PReLU PRelLU (S'Ze 7) (size=2)
Domain classifier

Dense Dense Dense Dense Dropout
(S|ze—70) (5|ze 35) (S|ze 20) (S|ze—10) (p=0. 09)
L; = —cross,entropy(
target domain,predicted domain)

oL 4
d6, Dense Dense Dense
(snze—25) (suze 10) (size=2)
/ MC vs data
. e T KS threshold

I 0.990
018

016

014 I 0.980

012
0975

010
0970

learning rate (label predictor) = 0.01
0.08 batch_size (domain classifier) = 1000

batch_size (label predictor) = 1000

(label predictor batches freq) / (domain classifier batches freq) =

MC vs data difference
KS
AUC
Statistical sensitivity

- 0.965

0.06

N R o 38
Tuni ng parameter ACAT 2017 Ryzhikov and Ustyuzhanin




CycleGAN

Monet — photo

39



CycleGAN

40



CycleGAN
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Reinforcement learning



Reinforcement learning

Alpha Zero : starting only from the rules, learn on its own by playing against himself in
a few days to play (separately) Go, chess, or japanese chess, and beats everyone, men
and computers
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HEP Application?

* Experiment design
e Data taking
* Success/failure?

=>n practice, could be use
to optimise triggering, which
can easily be virtualised

44



Finally...



Machine Learning playground

publication
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data




QATLAS

A EXPERIME

ATLAS ¢ Data
—— Sig+Bkg Fit (m _=126.5 GeV)
-------- Bkg (4th order polynomial)
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Conclusion

Machine Learning/Artificial Intelligence
. lots of promises for HEP (and other
science actually)

Powerful algorithms...
... on more and more playgrounds
However not trivial, not plug and play..

...will take time




