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Getting physics from LHC data may look like this

But we want even more:
not only “find a needle” but all the needles hidden there, or be sure that none can be found
using a reasonable amount of resources

In short, the goal is to use all the available information in your dataset
about the physics you’re looking after
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Experimental observables are Random variables
The fundamental reason is quantum mechanics
Example: decay time of an unstable particle. We can’t predict when each decay will occur, but we can predict the
probability P (t) = (1− e−t/τ ) to occur within a time t.
The probability density function (PDF) for the variable t is

de(t) =
dP (t)

dt
=
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Suppose to observe N decays. The distribution of the decay times can be shown with an histogram, where the number
of decays ki occurring in each time interval ∆i is counted. The probability that a decay occurs in a given interval is

pi =

∫
∆i

de(t)dt

Each ni is itself a random variable, following a binomial
distribution

dB(ki) =
ki!

N !(N − ki)!
pkii (1− pi)N−ki

whose expected value is obviously Npi:

E(ki) ≡
N∑
0

kidB(k; pi, N) = Npi ≡ λi
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Its random fluctuation around the expected value can be quantified by the standard deviation

σ(ki) ≡
√
E [(ki − E(ki))2] =

√
Npi(1− pi)

In the limit pi � 1 the binomial distribution can be approximated to the Poisson distribution

dB(ki)→ dP (ki) =
e−λiλkii
ki!

σ(ki)→
√
λi
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When trying to infer the model (in this case, the lifetime τ ) from the observations, we are limited by the available
statistics.

pi in each interval can be estimated from the frequency
fi = ki/N , whose standard deviation is

σ(fi) =

√
pi(1− pi)

N
Its value will thus converge to pi for N →∞, a concept known as the "law of large numbers"
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The response of any measuring device is usually affected by many sources of random uncertainty (temperature or
vibrational effects, digital sampling, . . . ). When several effects sum up linearly, we can expect that, at least to a good
approximation, the resulting PDF is Gaussian, according to the central limit theorem (CLT) :
For a set of M independent random variables xi, distributed according to (almost) any distribution, the PDF of the
sum X =

∑
i xi converges to a Gaussian (or normal) distribution

dG(X) =
1√
2πσ

exp

[
− (X − µ)2

2σ2

]
where µ =

∑
iE(xi) and σ2 =

∑
i σ(xi)

2 are the expected value and variance (squared standard deviation) of the
distribution

It is costumary to express central intervals corresponding
to a given probabiltiy in terms of “number of σs”:

P (|X − µ| < nσ) = 68.27% for n = 1

95.45% for n = 2

99.73% for n = 3

Note that the value of P (|X − µ| < nσ) is distribution
dependent,
though a limit valid for any distribution is the Chebyshev’s
inequality P (|X − µ| > nσ) < 1/n2
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The CLT limit is strictly valid only for n→∞ variables, but is still very powerful in practice.
Try yourself with a computer simulation!
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Take for example M variables uniformly distributed in [−0.5, 0.5].
The PDF of the sum can be obtained by a convolution of uniform distributions, resulting in polynomials of degree
M-1. Already for M=3, a large statistics is needed to distinguish the observed distribution from a gaussian.
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Still, with very large statistics, a non-gaussian model may be needed to describe the data
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Estimators

Now let’s take the experimentalist’s viewpoint.
From the observations, we want to estimate the parameters of the underlying model.

Example: we have a set [xi] i = 1, . . . N
of independent measurements of the mass of a particle µ, and we can assume that the uncertainty is gaussian.
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What is the best estimation of µ?
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A common estimator of the expected value is the average

x =

∑
i xi
N

which has the nice property of being unbiased for any PDF of x:

E(x) =

∑
iE(xi)

N
= E(x) = µ

its standard deviation is

σ(x) =

√∑
i σ

2(xi)

N2
=
σ(x)√
N

If σ(x) is not known, it can be estimated through the standard root mean square estimator:

σ2 =

∑
i(xi − x)2

N − 1

So we have an estimation of µ and its uncertainty.
Are we allowed to stop here?
Did we use all the information about µ contained in our N measurements?
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For example, we could have used two other unbiased estimators of µ:
The median: taking the ordered list of the xi

x̂med =

{ xN/2 + xN/2+1

2
N even

x(N+1)/2 N odd

The midpoint:

x̂mp =
max([xi]) +min([xi])

2
For a symmetric distribution (as the Gaussian), x, x̂med and x̂mp are all unbiased estimators of µ
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Of course, the one with lowest variance (“the most efficient”) should be preferred.
Is there a general way to choose the best estimator?
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The Likelihood function is a way to quantify how a given hypothesis for the value of the wanted parameter(s) is
compatible with the observations. It is simply the PDF of the observed random variables, interpreted as a function of
the parameter, while the random variables are fixed to the observed values.

L(µ) = d([xi] | µ)

if measurements are independent =⇒ L(µ) =
∏
i d(xi|µ)
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The “principle of maximum likeli-
hood” consists in choosing the esti-
mator which maximes L. For exam-
ple, for a single measurement xobs of
a gaussian variable the ML estimate
will be µ = xobs
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In our example of N Gaussian measurements we have

L(µ) =
∏
i

1√
2πσ

e
−(xi−µ)

2

2σ2

It is convenient to find the maximum of log(L):

∂ logL(µ)

∂µ

∣∣∣
µML

= 0

=⇒ ∂

∂µ

∑
i

− (xi − µ)2

2σ2
= 0

=⇒
∑
i

2(xi − µML)

2σ2
= 0

=⇒ µML =

∑
i xi
N

So, the average is a ML estimator of E(x) in the Gaussian case.
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It can be shown that, under very general assumption, for any estimator x̂ of a parameter µ

σ2(x̂) ≥

(
∂E(x̂)
∂µ

)2

Iµ
where Iµ = E

[(
∂ logL(µ)

∂µ

)2
]

= −E
(
∂2 logL(µ)

∂µ2

)
this is the Cramèr–Rao bound.
Iµ is called Fisher’s information and quantifies the amount of information carried by the data sample on the µ
parameter

For an unbiased estimator σ2(x̂) ≥ 1/Iµ

So the “perfect” estimator should be unbiased and having minimum variance.
Note that, for independent and identically distributed measurements L(µ) =

∏N
i=1 d(xi|µ)

Iµ = E
(
−
∑N
i=1 ∂

2log(d(xi|µ))/∂µ2
)
∝ N =⇒ the minimum σ decreases as

√
N

In our example
∂

∂µ
logL(µ) =

N∑
i=1

−(xi − µ)

σ2

=⇒ ∂2

∂µ2
logL(µ) = −N

σ2

=⇒ Iµ =
N

σ2

which is eactly the inverse variance of the x estimator!
=⇒the ML estimator of µ has minimum variance
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The choice of x as best estimator for our case could have been simply justified by noticing that the conditional
probability

d([xi] | x)

is not dependent on µ. Namely, once the value of our estimator is fixed, the particular configuration of our data points
doesn’t carry any additional information on µ.
In this case the estimator is said to be sufficient, and the likelihood can be factorised as

L([xi], µ) = g(x̂, µ)h([xi]) with dh/dµ = 0

In our example

L([xi], µ) =
∏
i

1√
2πσ

exp

(
−(xi − µ)2

2σ2

)

= exp

(
−Nµ2

2σ2
+
Nµx

σ2

)
·
(

1√
2πσ

)N
exp

(
−
∑
i x

2
i

2σ2

)
= g(x̂, µ) · h([xi])

An unbiased and sufficient estimator will also be an unbiased efficient one.
Clearly, if a sufficient estimator exists, the maximum likelihood estimator is a function of it.
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Let’s now consider a set [ti] following a uniform distribution
Example: arrival time of the neutrinos from CERN to Gran Sasso

We need the average arrival time T , knowing that the data follow a uniform PDF with limits [T − δ, T + δ]

du(t) =

{
1/(2δ) T − δ < t < T + δ
0 otherwise

What is the best estimator for T ?

L(T ) =
∏
i

du(ti, T ) =

{
(1/(2δ))

N
T − δ < min(ti) < max(ti) < T + δ

0 otherwise

so a sufficient estimator can only depend on min(ti) and max(ti). The configuration of the other data points doesn’t
bring any information
=⇒the unbiased estimator x̂mp = (max(xi) +min(xi))/2 performs better than the average x
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In general, ML estimators are not necessarily unbiased and efficient.
But, as a consequence of the CLT, they get both properties in the limit N →∞

logL(θ) = logL(x̂ML) +
∂2 logL
∂θ2

(x̂ML) · (θ − x̂ML)2

2
+ . . .

→ logL(x̂ML) + E

(
∂2 logL
∂θ2

)
· (θ − x̂ML)2

2
+O(1/

√
N)

= logL(x̂ML)− Iµ
2

(θ − x̂ML)2 +O(1/
√
N)

The profile of logL tends asymptomatically to become parabolic, with a curvature equal to half the Fisher’s
information. The pdf of x̂ML tends to be a Gaussian with minimum variance 1/Iµ
In practice, a parabolic profile is telling us if we are reasonably close to the limit, and allows to estimate the
uncertainty of the estimation from the values of µ corresponding to max(logL)− 1/2
(more commonly, min(−2 logL) + 1)
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The likelihood method can be extended to any number of parameters, by finding the maximum on the
multi-dimensional space of the parameters θ.

In the limit N →∞, L(θ) tends to

logL(θ) = logL(θ̂ML)− 1

2
(θ − θ̂ML)TF (θ − θ̂ML)

where F is the Fisher information matrix

Fij = E

(
−∂

2 logL(θ)

∂θi∂θj

)
The covariance matrix of the ML estimators is obtained by inverting the matrix:

Vθ̂ ≡ E
[
(θ̂ − E(θ̂))(θ̂ − E(θ̂))T

]
=


σ2(θ̂1) cov(θ̂1, θ̂2) . . . cov(θ̂1, θ̂n)

cov(θ̂2, θ̂1) σ2(θ̂2)
. . .

σ2(θ̂n)

 = F−1

which is optimal, since the Cramèr-Rao bound becomes

(Vθ̂)ij ≥ (F−1)ij
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The χ2 method
For large amounts of data, the computation of L can become computationally expensive, and we tend to do binned
analysis, where the data space is divided in intervals and we analyze the counts ki in each interval.
If the statistics is large enough the distribution of ki tend to be a Gaussian with σi =

√
E(ki) ≡ µi, so that the

likelihood function is (m is the number of intervals)

L ∼
m∏
i=1

1√
2πµi

exp

(
−(ki − µi)2

2µi

)
and the parameters describing the model of µi can be find maximizing L, i.e. minimizing the quantity

χ2 =

m∑
i=1

(ki − µi)2

µi

motivating the use of the χ2, or “least square” method to “fit” the model with unknown parameters to the observed
distribution
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)τt ~ K exp (-t/

Example: lifetime measurement from our first dataset.
In this case µi ∝ exp(−t/τ).
The lifetime is estimated by minimizing the χ2 with respect to τ .

The χ2 fits also provide a “goodness-of-fit” test, since if the assumed
model is correct, the distribution of the minimum χ2 follows the well-
known Pearson χ2 distribution.
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In general, for N gaussian variables xi ∼ N(µi, σi) the quantity

χ2 =

N∑
i=1

(xi − µi)2

σ2
i

follows the Pearson χ2 distribution

fχ2(χ2;n) =
1

2N/2Γ(N/2)
(χ2)N/2−1 exp(−χ2/2)

where Γ(x) =
∫∞

0
e−ttx−1dt and

N is called the “number of degrees of freedom” (ndf)

It has E(χ2) = N and σ(χ2) =
√

2N

When the µi are fitted to your data with np independent parameters and normalizing the model curve to the number
of observations, the min(χ2) still follows a Pearson distribution with N = m− np − 1

If the assumed model is not correct, the χ2 will have larger values than expected.
So, to verify if the data are compatible with the model, one can first check if the χ2 is close to its expected value
χ2/ndf∼ 1.
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More accurately, one can give a p-value, namely the probability
that, if the model is correct, the χ2 is larger than the observed
value.
If the p-value is reasonably large (tipically> 5% or 10%) we can
consider that the model is fitting the data.
This is the χ2 goodness-of-fit test
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In our example, ndf= m− 1− 1 = 38
We find χ2 = 27.93 , which is a reasonable value (p-value=88%)
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Classification
The likelihood function is also the ideal tool in classification problems, for example when we want to classify single
events as signal or background from a set of observables [xi].
The “Neyman-Pearson lemma” states that the most powerful criterion to discriminate an hypothesis H1 from an
hypothesis H0 is based on the likelihood ratio

L([xi] | H1)

L([xi] | H0)
> k

where the threshold k depends on the efficiency or purity you want to have on the selection
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Example: a cut on
L(m, pT | S)

L(m, pT | B)
is more powerful than the rectangular se-
lection shown on the plot

When dealing with many correlated variables, modeling the likelihood is often not possible in practice (due to the
limited statistics of calibration samples), and optimizing the classification requires the use of Machine Learning tools.
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Confidence intervals

The result of an estimation is usually given as x̂± σ(x̂)

But what this interval actually means in terms of probability?

In general, the result should be a confidence interval with a given confidence level α, meaning that we have a
probability α that the true value of our parameter is within the interval.

(i.e. if I repeat the experiment many times, a fraction α of the results will include the true value)

In the Gaussian limit, the interval x̂± σ(x̂) corresponds to α = 68.3%, and the interval for any value of α will be

x̂± nσσ(x̂) with nσ = P−1
G ((1 + α)/2)

where PG(X) =
∫X

0

1√
2π

exp

[
−x

2

2

]
dx is the cumulative “standard” Gaussian distribution (µ = 0, σ = 1)

When far from the limit, we need to take into account the non-Gaussian distribution and the uncertainty on σ(x̂).

Example: consider a single observation tobs of a decay time. The ML estimator of the lifetime is τ = tobs, but what is
the 68% confidence interval?

The standard deviation of the estimator is also τ , but if we use the interval τ = tobs ± tobs we are right only in 60.6%
of cases
(exercise: prove it)
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The general procedure for calculating accurate confidence intervals connsists in building a “confidence belt”,
determining an interval for the estimator values corresponding to probability α for each possible value of the
parameter θ.

The interval in the belt corresponding to a given observation will contain the true value with probability α,
independently on the value of θ
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In our example of a single decay time variable, a “central”
confidence belt corresponds to

−τ log(1− 1− α
2

) < t < −τ log(1− 1 + α

2
)
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from which we get the confidence interval

− tobs
log ((1− α)/2)

< τ < − tobs
log ((1 + α)/2)

By choosing a non-central interval t > K (or t > K) one
can determine lower (or upper) limits for the parameter
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The profile of the likelihood function, provides an approximate but faster way to estimate confidence intervals:
even when far from the Gaussian limit, the interval corresponding to

L > max(L)− nσ(α)2/2

is a good proxy for the confidence interval corresponding to level α.
(nσ = 1 for α = 68.3%, nσ = 2 for α = 95.5%, etc)

In our example, logL(τ) = − log(τ)− tobs/τ
The approximate solution corresponding to α = 90% (nσ = 1.64) has an actual confidence of 87.5%.
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Significance
Understanding the “confidence” is particularly important for establishing a
discovery.
A claim for discovery is usually based on the compatibility of the observa-
tion with the “null hypothesis” of no new signal, expressed with the p-value,
namely the probability that the the data are less compatible with the null hy-
pothesis than the observation. The confidence level for the discovery is thus
α = 1− p
The significance is the equivalent number of Gaussian standard deviations

p-value Z1t Z2t

10% 1.28 1.64
5% 1.64 1.96
1% 2.33 2.58

0.13% 3 3.21
0.27% 2.78 3

2.9 · 10−7 5 5.13
5.7 · 10−7 4.86 5

One-tailed case
(signal can appear only as an excess over background)

Z1t = P−1
G (1− p)

Two-tailed case
(signal can appear on both sides)

Z2t = P−1
G (1− p/2)

It is custumary in HEP to consider seriously (“evidence”) significances above 3 σ, and to claim for discovery for
Z > 5 (“observation”)
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As an example, consider a counting experiment with (known) b expected background events and n observed.

To look for a signal, we look for an excess of the number of counts with respect to b (one-tailed test):

s = n− b

A negative s can only be due to a downward background fluctuation, so one usually computes the significance only
for s > b (and sets Z = 0 otherwise).

In the limit where b is large enough so that its pdf can be approximated with a Gaussian with σ =
√
b the significance

is simply

Z =
max(s, 0)√

b
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In a counting experiment with Poissonian statistics, one usually obtains the significance from the statistics

q0 =

 −2 ln

(
L(s = 0)

L(s = ŝ)

)
= 2(n log(n/b) + b− n) ŝ > 0

0 ŝ < 0

where ŝ = n− b is the ML signal estimator and we used L(s) =
(s+ b)n

n!
exp[−(s+ b)]

If statistics is reasonably large, the Wilk’s theorem states that, in the null hypothesis of no signal, the likelihood ratio
of nested hypothesis is approximatively distributed as a χ2 with a number of degrees of freedom equal to the
additional parameters (1 in this case: the signal count). In this limit the significance Z is simply

√
q0:

Z ∼
{ √

2(nlog(n/b) + b− n) ŝ > 0
0 ŝ < 0

One often considers the median significance of an experiment for a given expected signal s. To a good
approximation, it is equal to the significance computed for the data set where the signal count is set equal to the
expected value s (the “Asimov data set”), thus:

med(Z | s) =
√
qA =

√
2((s+ b)log(1 + s/b)− s)

These formula can be readily extended to the case of a set of counters [ni], and the
√
qA method can be used for any

likelihood function
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